

Q.No.	ANSWERS					
	SECTION A					
1	(C) 31					
2	(A)2					
3						
4	(B)[-7,3]					
5	(C) 22/2					
0	52/5 (A) DS 2 000					
/	(A) RS 3,000					
ð	(C) Rs 40,600					
9	(B) Rs 10,000					
10	(B) Compound Annual Growth Rate					
11.	(C) Irregular Trend					
12.	(D) All the above					
13	(D) any point on the line segment joining the points (0, 2) and (3, 0).					
14						
	(A) III = IIp					
15.	(a) 0					
16.	(A) Bell Shaped					
17.	(D) III only					
18	(D) a parameter					
10	(2)					
20						
20	SECTION B					
	SECTION B					
21	Speed of still water (x) = 8 km/hr					
	Speed of the stream (y) = 4 km/hr					
	Distance Covered (d) = 16 km					
	Speed of upstream (v) = $x - y = 8 - 4 = 4$ km/hr					
	Time Taken in upstream = d/s = 16/4 = 4 hour					
22	$\begin{bmatrix} 5 & 3x \\ 2y & z \end{bmatrix} = \begin{bmatrix} 5 & 12 \\ 6 & 4 \end{bmatrix}$					
	\therefore 3x = 12 \Rightarrow x = 4 and 2y = 6 \Rightarrow y = 3 and z = 4					

23	$i = \frac{0.06}{2} = 0.0$	3					
	We know th	at					
	$\mathbf{P} = \frac{R}{i} = 40,00$	00					
	$40000 = \frac{X}{0.03}$						
	x = R.S 120	0					
24	Let sample	space S = {	1,2,3,4,5,6	}			
	Probability	distribution	:				
	Х	1	2	3	4	5	6
	P(X)	1/6	1/6	1/6	1/6	1/6	1/6
				OR			
	Mean $=\sum x_i$	$_{i}P(x_{i}) == ($	$0 \times \frac{1}{10} + 1$	$\times \frac{1}{2} + 2 \times \frac{2}{5}$.)		
	$=\frac{1}{2} + \frac{4}{5} = \frac{(5+8)}{10} = \frac{13}{10} = 1.3$						
25	H0 : μ = 0.50 mm and H1 : μ = 0.50 mm Thus two tailed test is applied under hypothesis U0						
	Thus two tailed test is applied under hypothesis H0 $t = \frac{\overline{X} - \mu}{s} \times \sqrt{n-1} = \frac{0.53 - 0.50}{0.03} \times \sqrt{9} = 3$						
	Since t(=3) >	to.025(2.262), t	the null hypot	hesis H ₀ can b	be rejected. H	ence we conc	lude that
	machine is no	t working pro	pperly.				

Yearl Quarte	ly/ erly	Small scale industry	4-quarterly moving total	4-quarterly moving average	4-year centered moving average	
	I	39				
					Page	
	п	47	162	40.5		
2020	- 111	20	191	47.75	44.125	
	IV	56	203	50.75	49.25	
	I	68	249	62.25	56.5	
	П	59	265	66.25	64.25	
2021	- 111	66	205	71 25	68.75	
	IV	72	286	71.25	71.375	
	1	88	200	70.00	7 0.75	
	П	60	200	69.75	69 :375	
2022	- 111	60	215	08.75		
	IV	67				
terns setting		$= x^{2} e^{x} -$ $= x^{2} e^{x} -$ $= x^{2} e^{x} -$ $= x^{2} e^{x} -$	$\int 2x e^{x} dx$ $2 \left[x \int e^{x} dx - \int \left(\frac{d}{dx} - \frac{d}{dx} \right) \right]$ $-2 x e^{x} + 2 \int e^{x} dx$ $-2 x e^{x} + 2e^{x} + c = e^{x}$ OR	$[Integration dx] = \frac{1}{x} (x) \int e^x dx dx dx$ $[Integration dx] = \frac{1}{x} (x^2 - 2x + 2) + c.$	tegrating by parts]	
Solutio Let Multipl	on. (i) ving b	Let $I = \int \frac{3x+1}{(x-1)^2 (x+3)}$ oth sides by (x:	$\frac{3x+1}{(x-1)^2 (x+3)} dx$ $= \frac{A}{x-1} + \frac{B}{(x-1)}$ $= -1)^2 (x+3), \text{ we get}$	$\frac{1}{2} + \frac{C}{x+3}$		
	Year Quarte 2020 2021 2022 Soluti Soluti Let Multipl	Yearly/ Quarterly I I 2020 IV II 2021 II 2021 II 2022 II 2022 III 2022 III Solution. (i) Solution. (i) Let Multiplying b	Vearly/ QuarterlySmall scale industry13920201120120168168159202111661881060202211601160160160160167	Yearly/ Quarterly Small scale industry 4-quarterly moving total 1 39 2020 1 1 39 1 39 2020 11 2020 191 10 56 2021 168 1 68 2021 166 10 59 2021 166 2021 166 2021 166 2021 17 60 275 10 60 2022 11 60 275 10 60 2022 11 60 275 11 60 2022 11 60 275 10 67 Solution. (i) Let I = $\int x^2 e^x dx = x^2 \int e^x dx = \int \left(\frac{d}{d} dx = x^2 e^x - 2 \left[x \int e^x dx - \int \left(\frac{d}{d} dx = x^2 e^x - 2 x e^x + 2 \int e^x dx = x^2 e^x - 2 x e^x + 2 \int e^x dx = x^2 e^x - 2 x e^x + 2 e^x + c = e^x OR 0R Solution. (i) Let I = \int \frac{3x + 1}{(x - 1)^2 (x + 3)} = \frac{A}{x - 1} + \frac{B}{(x - 1)} $	Vearly/ Quarterly Small scale industry 4-quarterly moving total 4-quarterly moving average 1 39 1 47 162 40.5 2020 11 20 191 47.75 10 20 191 47.75 10 56 203 50.75 11 59 265 66.25 2021 10 66 285 71.25 11 59 266 71.5 68.75 2021 10 60 275 68.75 2022 11 60 275 68.75 2022 11 60 275 68.75 2022 11 60 275 68.75 10 67 1 1 1 1 11 60 275 68.75 1 1 10 67 1 1 1 1 1 1 1 1 1 1 1	Vearity/ Quarterly Small scale industry 4-quarterly moving total 4-quarterly average 4-quarterly moving 4-year centered moving average 1 39

Putting x = 1 in (2), we get : $4 = B \cdot (4) \Rightarrow B = 1$ Putting x = -3 in (2), we get : $-8 = C \cdot (16) \Rightarrow C = -\frac{1}{2}$ Comparing the coefficients of x^2 on both sides of (2), we get $0 = A + C \Rightarrow A = -C = \frac{1}{2}$ $\therefore \frac{3x+1}{(x-1)^2(x+3)} = \frac{1}{2(x-1)} + \frac{1}{(x-1)^2} - \frac{1}{2(x+3)}$ $\therefore \qquad I = \int \left(\frac{1}{2(x-1)} + \frac{1}{(x-1)^2} - \frac{1}{2(x+3)}\right) dx$ $= \frac{1}{2} \int \frac{1}{x-1} dx + \int \frac{1}{(x-1)^2} dx - \frac{1}{2} \int \frac{1}{(x+3)} dx$ $= \frac{1}{2} \log |x-1| - \frac{1}{x-1} - \frac{1}{2} \log |x+3| + c.$

28	Solution. The given curve is $x^2 + 2y^2 - 4x - 6y + 8 = 0$	(1)
	Differentiating (1) w.r.t. x, we have	
	$2x+2 \cdot 2y\frac{dy}{dx} - 4 - 6\frac{dy}{dx} = 0$	
	$\Rightarrow \qquad \frac{dy}{dx}(4y-6) = 4 - 2x \Rightarrow \frac{dy}{dx} = \frac{2-x}{2y-3}$	(2)
	Putting $x = 2$ in (1), we have \therefore so that the second se	a = 2 (Given)]
	$4 + 2y^2 - 8 - 6y + 8 = 0 \implies 2y^2 - 6y + 4 = 0$	
	$\Rightarrow \qquad y^2 - 3y + 2 = 0 \qquad \Rightarrow \qquad (y - 2) (y - 1) = 0 \Rightarrow 2$	y = 2, 1.
	Thus the two points of contact are $(2, 2)$ and $(2, 1)$.	
	Equation of normal at (2, 2) :	
	At (2, 2): $\frac{dy}{dx} = \frac{2-2}{4-3} = \frac{0}{1}$	[Using (2)]
	:. Slope of tangent at (2, 2) = $\frac{0}{1}$ and hence slope of normal = $-\frac{1}{0}$	10-11-
	$\therefore \text{ Equation of normal at } (2, 2) \text{ is } y - 2 = -\frac{1}{0}(x - 2) \text{ i.e., } 0 = -x + 2 \implies x$: = 2
	Equation of normal at (2, 1):	
	At (2, 1): $\frac{dy}{dx} = \frac{2-2}{2-3} = \frac{0}{-1}$	[Using (2)]
	∴ Slope of tangent at (2, 1) = $\frac{0}{-1}$ and hence slope of normal = $\frac{1}{0}$	
	:. Equation of normal at (2, 1) is $y - 1 = \frac{1}{0}(x - 2)$ i.e., $0 = x - 2 \implies x = x = 1$	2.
	Solution. Here $R(x) = 200 + \frac{x^2}{5}$	
	(<i>i</i>) Average revenue (AR) = $\frac{R(x)}{x} = \frac{1}{x} \left(200 + \frac{x^2}{5} \right) = \frac{200}{x} + \frac{x}{5}$	
	(<i>ii</i>) Marginal revenue (MR) = $\frac{d}{dx}[R(x)] = \frac{d}{dx}\left(200 + \frac{x^2}{5}\right) = \frac{2x}{5}$	
	(<i>iii</i>) When $x = 25$, MR = $\frac{2}{5} \times (25) = 10$.	

29	Solution. The given supply function is $100 p = (x + 20)^2$
	Here $p_0 = 25$.
	Putting $p = p_0 = 25$ and $x = x_0$ in the supply function $100n = (x + 20)^2$ we have
	$\Rightarrow 100 \times 25 = (x_{0} + 20)^{2} \Rightarrow (x_{1} + 20)^{2} - 2500$
	$\Rightarrow \qquad r + 20 = 50 \qquad \Rightarrow r = 20$
	$\Rightarrow \qquad x_0 + 20 = 50 \qquad \Rightarrow x_0 = 30$
	$\therefore \qquad \text{P.S.} = p_0 x_0 - \int_0^{x_0} p dx = 25 \times 30 - \int_0^{30} \frac{(x+20)^2}{100} dx$
	$= 750 - \frac{1}{100} \left[\left(\frac{x+20}{3} \right)^3 \right]_0^{30} = 750 - \frac{1}{300} \left[(50)^3 - 20^3 \right]$
	$= 750 - \frac{1}{300} (125000 - 8000) = 750 - 390 = ₹ 360.$
30	$I = \frac{10}{(200000)(5)} = 100000$
	100
	n = 5 years = 5x12 = 60
	EMI is given by the formula
	P + I
	$EMI = \frac{1}{n}$
	$EMI = \frac{200000 \pm 100000}{60} = R.S 5000$
31	Standard deviation= npq=8
	Mean = np=10
	By dividing npq/np = $8/10$
	q = 4/5 p=1-q
	=1-4/5
	=1/5
	np= 10
	11=50
	$p(x=r) = 50_{c_r} \left(\frac{1}{5}\right) \left(\frac{1}{5}\right)$
	OR Mean = n
	Variance= npq
	Sum= np+npq
	n=5 5n+5nq=4.8
	10p-5p2=4.8
	p=1.2, 0.8
	p=0.8=4/5
	q=1-p 1/5
	$r(y - r) - r - (4)^r (1)^{5-r}$
	$P(X=I) = S_{C_r}\left(\frac{1}{5}\right) \left(\frac{1}{5}\right)$

L

32	Solution. The given equations can be expressed in the form of matrix equation AX =
	where $\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \\ 2 & 1 & -1 \end{bmatrix}; \mathbf{X} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}; \mathbf{B} = \begin{bmatrix} 6 \\ 2 \\ 1 \end{bmatrix}$
	Here $ \mathbf{A} = \begin{vmatrix} 1 & 1 & 1 \\ 1 & -1 & 1 \end{vmatrix} = 1(1-1) - 1(-1-2) + 1(1+2)$
	$\begin{vmatrix} 2 & 1 & -1 \end{vmatrix}$
	$= 0 + 3 + 3 = 6 \neq 0$
	: A is non-singular and so the system has a unique solution given by
	$\mathbf{X} = \mathbf{A}^{-1} \mathbf{B}$
	Let A_{ij} be the co-factor of a_{ij} in $ \mathbf{A} $. Then $a_{ij} = a_{ij} = a_{ij}$
	$A_{11} = \begin{vmatrix} -1 & 1 \\ 1 & -1 \end{vmatrix} = 0; \qquad A_{12} = \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} = 3; \qquad A_{13} = \begin{vmatrix} 1 & -1 \\ 2 & 1 \end{vmatrix} = 3$
	$A_{21} = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = 2; \qquad A_{22} = \begin{vmatrix} 1 & 1 \\ 2 & -1 \end{vmatrix} = -3; \qquad A_{23} = \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} = 1$
	$A_{31} = \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} = 2; \qquad A_{32} = \begin{vmatrix} 1 & 1 \\ 1 & 1 \end{vmatrix} = 0; \qquad A_{33} = \begin{vmatrix} 1 & 1 \\ 1 & -1 \end{vmatrix} = -2$
	$\therefore \text{adj. } \mathbf{A} = [\mathbf{A}_{ij}]' = \begin{bmatrix} 0 & 3 & 3 \\ 2 & -3 & 1 \\ 2 & 0 & -2 \end{bmatrix}' = \begin{bmatrix} 0 & 2 & 2 \\ 3 & -3 & 0 \\ 3 & 1 & -2 \end{bmatrix}$
	$\mathbf{A}^{-1} = \frac{1}{ \mathbf{A} } (adj. \mathbf{A}) = \frac{1}{6} \begin{bmatrix} 0 & 2 & 2 \\ 3 & -3 & 0 \\ 3 & 1 & -2 \end{bmatrix}$
	$\mathbf{x} = \mathbf{A}^{-1} \mathbf{B}$
	$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 0 & 2 & 2 \\ 3 & -3 & 0 \\ 3 & 1 & -2 \end{bmatrix} \begin{bmatrix} 6 \\ 2 \\ 1 \end{bmatrix} = \frac{1}{6} \begin{bmatrix} 6 \\ 12 \\ 18 \end{bmatrix} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$
	Hence the required solution is $x = 1$, $y = 2$, $z = 3$.

35	When a die is tossed $S = \{1.2.3.4.5.6\}$						
	Let E be the event "the number greater than 4"						
	E={5.6	}					
	n (E)=2	2					
	p=P(E)	$=\frac{2}{6}=\frac{1}{3}$					
	$q = 1 - \frac{1}{2}$	$=\frac{2}{3}$					
	As the	die is tossed tw	vice there are 2	bernoullian tr	ials.		
	Let X d	enote the num	ber of successe	s the X can tal	ke values 0,1,2		
	P(0) = 2	$C_0 n^0 a^2 = (\frac{2}{3})^2$	$2 - \frac{4}{2}$, ,		
	1(0)	$2C_0pq = \frac{1}{3}$					
	P(1) = 2	$2C_1 p^1 q^1 = 2 \left(\right)$	$\left(\frac{1}{3}\right)\left(\frac{2}{3}\right) = \frac{4}{9}$				
	P(2) = 2	$2C p^2 q^0 = \left(\frac{1}{3}\right)^2$	$2^{2} = \frac{1}{9}$				
	Probabi	ility distributio	n of Number o	f successes is			
		x	0	1	2		
		P(x)	4	4	1		
		. ()	9	9	9		
	$M_{2222} = \sum x = -(0)(4) + (1)(4) + 2(1) = 6$						
	Weak $-2x_ip_i^{-}(0)(\frac{1}{9}) + (1)(\frac{1}{9}) + 2(\frac{1}{9}) - \frac{1}{9}$						
	$\Sigma p_i x^2 =$	$=(0)(\frac{4}{9})+(1)$	$\left(\frac{4}{9}\right) + 4\left(\frac{1}{9}\right) =$	9			
	Variance = $\sum p_i x^2 - (\sum x_i p_i)^2 = \frac{8}{9} - \frac{4}{9} = \frac{4}{9}$						
	Standard Deviation = $\sqrt{Var} = \frac{2}{2}$						
	Standal	Standard Deviation $-\sqrt{v} \alpha r - \frac{1}{3}$.					
				UK			

37	N=100, p=6/100, λ =np =100x(6/100) =6					
20	P (r) = $\frac{e^{-\lambda}\lambda^r}{r!}$ (i) P(0) = $\frac{e^{-6}6^0}{0!} = e^{-6} = 0.0024$ (ii) P(2) = $\frac{e^{-6}6^2}{2!} = 0.0024x \left(\frac{36}{2}\right) = 0.0432$ (iii) P(0)+P(1) = $e^{-6} + 6e^{-6} = 7e^{-6} = 0.0168$ OR Mean = $\lambda = 6$ Variance= $\lambda = 6$					
38						
	O-38 Case S	tudy – III				
	Year	Y	X=Year - 2003	X ²	XY	
	2001	160	-2	4	-320	
	2002	185	-1	1	-185	
	2003	220	0	0	0	
	2004	300	1	1	300	
	2005	510	2	4	1020	
		1375		10	815	
	2 Marks for table					
	$a = \frac{\Sigma Y}{n} = \frac{1375}{5} = 275$ ¹ / ₂ Mark					
	$b = \frac{\sum XY}{\sum X^2} = \frac{815}{10} = 81.5$ ¹ / ₂ Mark					
	$Y_c = a + bX$					
	$Y_c = 275 + 8$	1.5 X				
	The estimated value for 2008 will be $275 + 81.5 \times 5 = 275 + 407.5 = 682.5$ 1 Mark					
	*****END*****					